
16 Digital Fundamentals

rather than directly subtracting the subtrahend from the minuend. These are, of course, identical op-
erations: A – B = A + (–B). This type of arithmetic is referred to as subtraction by addition of the
two’s complement. The two’s complement is the negative representation of a number that allows the
identity A – B = A + (–B) to hold true.

Subtraction requires a means of expressing negative numbers. To this end, the most-significant
bit, or left-most bit, of a binary number is used as the sign-bit when dealing with signed numbers. A
negative number is indicated when the sign-bit equals 1. Unsigned arithmetic does not involve a
sign-bit, and therefore can express larger absolute numbers, because the MSB is merely an extra
digit rather than a sign indicator.

The first step in performing two’s complement subtraction is to convert the subtrahend into a neg-
ative equivalent. This conversion is a two-step process. First, the binary number is inverted to yield a
one’s complement. Then, 1 is added to the one’s complement version to yield the desired two’s com-
plement number. This is illustrated below:

Observe that the unsigned four-bit number that can represent values from 0 to 1510 now represents
signed values from –8 to 7. The range about zero is asymmetrical because of the sign-bit and the fact
that there is no negative 0. Once the two’s complement has been obtained, subtraction is performed
by adding the two’s complement subtrahend to the minuend. For example, 7 – 5 = 2 would be per-
formed as follows, given the –5 representation obtained above:

Note that the final carry-bit past the sign-bit is ignored. An example of subtraction with a negative
result is 3 – 5 = –2.

Here, the result has its sign-bit set, indicating a negative quantity. We can check the answer by calcu-
lating the two’s complement of the negative quantity.

0 1 0 1 Original number (5)

1 0 1 0 One’s complement

+ 0 0 0 1 Add one

1 0 1 1 Two’s complement (–5)

1 1 1 1 0 Carry bits

0 1 1 1 Minuend (7)

+ 1 0 1 1 “Subtrahend” (–5)

0 0 1 0 Result (2)

1 1 0 Carry bits

0 0 1 1 Minuend (3)

+ 1 0 1 1 “Subtrahend” (–5)

1 1 1 0 Result (–2)

-Balch.book Page 16 Thursday, May 15, 2003 3:46 PM

Digital Logic 17

This check succeeds and shows that two’s complement conversions work “both ways,” going back
and forth between negative and positive numbers. The exception to this rule is the asymmetrical case
in which the largest negative number is one more than the largest positive number as a result of the
presence of the sign-bit. A four-bit number, therefore, has no positive counterpart of –8. Similarly, an
8-bit number has no positive counterpart of –128.

1.7 MULTIPLICATION AND DIVISION

Multiplication and division follow the same mathematical rules used in decimal numbering. How-
ever, their implementation is substantially more complex as compared to addition and subtraction.
Multiplication can be performed inside a computer in the same way that a person does so on paper.
Consider 12 × 12 = 144.

The multiplication process grows in steps as the number of digits in each multiplicand increases,
because the number of partial products increases. Binary numbers function the same way, but there
easily can be many partial products, because numbers require more digits to represent them in binary
versus decimal. Here is the same multiplication expressed in binary (1100 × 1100 = 10010000):

1 1 1 0 Original number (–2)

0 0 0 1 One’s complement

+ 0 0 0 1 Add one

0 0 1 0 Two’s complement (2)

1 2

X 1 2

2 4 Partial product × 100

+ 1 2 Partial product × 101

1 4 4 Final product

1 1 0 0

X 1 1 0 0

0 0 0 0 Partial product × 20

0 0 0 0 Partial product × 21

1 1 0 0 Partial product × 22

+ 1 1 0 0 Partial product × 23

1 0 0 1 0 0 0 0 Final product

-Balch.book Page 17 Thursday, May 15, 2003 3:46 PM

